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* *S'TRACT

Consider the differential equation (1) k f(x) in a. Banach space and let

x* be an equilibrium. The basic question treated is the following: if x* is

asymptotically stable and if (2) xk. 1 = xk + htp(xk,h) is a one-step method, with

fixed step size h, for integrating (1), then does the sequence xk converge to

x*? It is shown that uniform asymptotic stability of (1) implies stability of (2)

and that exponential asymptotic stability of (1) implies asymptotic stability of (2)

DD .NOV ?1473 UINCLASSIFT



Abstractb

Consider the difr'eren•4•al. equation (1) k - f(x) in a BDanaoh

space &.,d lot x* be oin equilibriia. The basic question treated i, the

f0o~llnEit it x* in usymitotloSa.1y stable@ and it' (2) Kk,ý aUx +

VQ~xph)ip one-stop method) vith fixed step nits h, for integrting

(1), then does tho sequence xk convorge to x*? It is shown that uniform

asympto1A. atutbi3ity of (1)impl~ies stabil~ity of (P) and that exponential

asymptotico stability of (1) implIns asymptotic satsbil.!ty of (2).



SI,. Xntroduetion.

Consider the differential equation

(k f(x)

and lot x* be an equilibriun point. The basic question to be treated

here is the following, if x* is an asymptotically stable equilibrium and

if

(1.P) Xk+u xk + 'Q(xkh)"

in a one step method, with fixed step size h, for integrating (1.1), then

does xk converge to x* as k tends to infinity? We shall show in

our first main theorem that uniform asymptotic stability of (1.1) implies

stability of (1.2) and in our second main theorem that exponential asymp-

totic stability of (1.1) implies asymptotic stability of (1.2) (improving

a result of Skalkina (11i).

Our interest in the problem considered here steamed from an investi-

F gation of iterative methods for solving the equation F(x) = 0 in a Banach

spae. If f(x) is a function whose zeros include the zeros of F (for

example, f(x) = -(Fx)-F(x)), then numerical integration of (1.1) w1fl

lead to iterates xk corresponding to points x(tk;xO) on the solution

cirve. If the initial point x0  is in a region of attraction of the equi-

libriiu x*, then under what condition does xk converge to x*? Various
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authors have used uimilsar ideas to develop algorithms for solving F(x) - 0

S([1 2 ) 1530'J) in particular uituotions. For toxe m le, Boggs ( 1.3) has in-

tegrated the eqwation k w .(FX)"3F(x) with the A-stable mothods of

Dahlquiat to generate iterates xk vfih converge to a root of P. In

(2;31,03, Euxler and Runge-Kutta integration methods are used to generate

iterates xN which eventual.y lie within the region of convergence of

Newton's method. Here, res'lts are devoloped for general one step methods.

2. tluorm Asymptotic Stabilitly.

Lit X be a real banach space with norm, fl "Ufand let S(r) -

(xI 1141 < r] be the closed baUa of radius r about 0 in X. We let '

be a mnapping of X into itself and x* be a zero of f. We assurdel,

without loss of generality, that x* = 0. Now, suppose that f is d1efin eiA

on the ball S(R) and that p(xh) is a mapping of S(R) X [O, h]3 into

X. We assume throughout the sequel that the following conditions are sat-

isfied'

(2.1) there are positive constants L and L' such that I1f(x)-f(y)t1 <

141x-yU and jjp(x,h)-Tp(y,h)jl < L'llx-yjj for all xy ES(R) and

0 < h < h0 ;

(2.2) cp(:ch) is uniformly continuous on S(R) x [0 ...

(2.3) !V(x)O) f W) for a].l x z S (R); an d

(2.4) f(o) q (O0,h) = 0 for all hE [OIho3.

!4
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We oonsider the differential equation

and the one step integration method

(2.6) N+ i + 1l(XV~)

[Note that (2.6) is consistent in view of the assumption (2.3)]. We now

have

DEFINITION 2.7. The solution1 x 0 of (2.5) is uniformly stable if, given

e > 0, there is e. 5(e) > 0 such that JjxOjI < b(c) implies that

Ilx(t to, x0)11 < F for t > to where x(t;t 0 ,xo) is the solution of (2.5)

with .(toil to, x0) = XO. The solution x = 0 of (2.5) is uniformly asymp-,

toticaly stable on a ball S(r) if it is uniformly stable and if, given

C > 0, there is a T(e) > 0 such that jxOjj< r implies that

Hx(t) t, xo)11 < t for t>to + T(e).

We note that since X may be infinite dimensional, uniform asymp-

totic sta4ility and asymptotic stability are not equivalent (Q 91).

We now assume that the solution x = 0 of (2.5) is uniformly

asymptotically stable on the ball S(R) for some R > 0. If 8(e) and

T(e) are the functions characterizing the stability of (2.5) as in defini-

tion 2.7, then we may assume that 5(.) and T(-) -are strictly monotonic

continuous functions (see [ P7 p. 309)). We also suppose for simplicity that

t 0  0 and we let x(t~xO) x(tjOlxO). We then have:

I
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LM4% 2.8. Let rb be real nvuibers such that 0 < r < b < B(R). Then

there is a t > 0 such that infc(1pxCt; O)l t e otl], r < 11 xO11 b)

is strictly positive.

Proof: Since b < 5(R), Ilx(t;xo)Uj < R and so JIx(t;xo)-xO1j=
t , t

11f (f(x(s))Xf(xo))ds + tf(xo)ll < L f 1x(s)-xojjds + tjjf(xo)jj (where x(')

0 
0

x(';x0 )). It follows from Gronwall's inequality and an Integration by

parts that

(2.9) 
I1x(t) -xo1i < Q xolj teLt

Lt
Therefore, llx(t;xo)ll 11 x0O (1-Ltet) and we nay choose tI > 0 such

Lt

that 1 Lt e > 0.

Following Massera ([9]), we let G(') be a continuous strictly

increasing function with G(r) < 2r, G(O) = 0 and we introduce the A

Lyapunov function V(.) for (2.5) given by

(2.10) V(x0 ) = sup(G(IIx(t;Xo)11) (1+2t)/(1+t) I t > 0)

for 0 < 11 011 _< p where p = mint1, 5(R)).

LEW. 2.11. ([93). V(') has the following properties: (i) G(liXrjl) e

v(1) 0< ?11 x0U; (1i) JIV(xC)-V(yo)U _<41 x-yo0U for some M > 0; (isi)

X-' ' lim sup -V(xk;xo))-V(Xo)]/k < "G(lxo )(1+2( 12)'; and,

(iv)Xo ; k < 0+
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1l Xo1,1 yoll < p and k > 0.

Letting flJq(O1x) = G(Ijxojj)(1+2T(jjxofl/2)- 2, we have:

L'54AM 2.12. If 0 < r < 5(p) and e > 0, then there is a k(re) > 0

such that

(2.13) V(x(kI;Xo))-V(xo) < k(4-(111ID)+eG(llxoli))

for 0 < k < k(r,e), r < lxoI <8(p).

Proof: Choose t > 0 by lemma 2.8 so that m inf(jjx(t;xO)jjjo < t < tl,1
ir < 1l•o11 < 8(p)j > 0. Then 0 < m < llx(t;xo)ll < p for 0 < t < t and

Since A(k,() = [1+2k+2T(a))] is uniformly continuous on [0,tll x

1:m/2, p/21, there is an n = ni(e) such that IA(ka,G'-A(0,j)I < e if

Ik + jT''l- < % Let k(r,e) be the smaller of tI and the unique posi-

tive solution of k + . Letting adxo) a

a = 11x- H /2P it follows from (2.9) that I a'I -al <- 1x(kgxO) -xOj1 /2 <

(L8(p)keLk)/2 and hence, by virtue of lemma 2.11, that V(x(k; x0 ))-V(xo) <

-11t(•11H)A(k,o'_) < k(-*(lx•ol) + eG(lIoII)).

LOW 2._14. There is an N > 0 such that, if x(t)xo) and xo+-.(xo) are

elements of S(R) for < t < h < h then lxo+hf (Y.)-x(h; xo)l

-h x2 11• .

Proof: Apply Oronvall' s inequality.

i
LFA21.Ltp-mnlbR) ad upg it~~~)i nfrl

i . . . . ..0

I

I
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continuous on S(P) X to,h01. If 0 < r < ro(p), then there is an h (r) >0

such that

(2.16) V(x0+hcp(x 0,h)) ~V(xc) < 7 h'(r) < 0

whenever 0 < h < h 1 (r), r < 11X011 <8B(P).

Prooft Assume without loss of generality that 8(P) < P. hn if h <

(p-5(p))/[E8(p)nax(LpL1)), xo+lhP(X 0,h) aad x0+hf(xC0) are elements Of

S(P). Now, V(x 0 4IbP(x 0 ,h))-V(xo) < I.V(XO+Mt(xo~h)) - V(x 0+hf(x0))I +

I v(,0+lf (xc0)) -V(x(h; XO))I + V(,c(h)'x0)) - V(x 0 ). -It follows from~ the pre-

vious lermas, that) for 0 < r < B(p) and e > 0, there is a k(r,e) > 0

such that if

(2.17) 0 < h < h* mnre*h,(-()/F~~a(p11

then

(2.18) V(x 0+hP (x 0, h)) %V() < Mjc(x 0 , h) -.f (x0) 1 + M~jxl

- *(Hjx 0 jI) + Gjxjh

for r < 11X01 (p).
Let CO~) uSUP(JI ip(Xlh) 4 (x, 0) 11 r < 11 Al < 5(P)) and ta1e

*(r)AVi0(b(pYý. INote that cp(x,) -f)~ Since p(PXlh) is vu~i1formlY
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continuous, c(b) is continuous. Moreover, -(0) 0. Thus, the equation

cz(h) + Nhb(p) = '(r)/(4QM) has a least positive root h > 0. If 0 < h!(r) <

min(h*,ý), then it follows that

(2.19) V(xo+hp(xo,h)) V(x0 ) < -

for 0<h< h(r) and r< _1x0I<b(p).

We can now prove the followihg:

THEO1M 2.20. Suppose that the solution x = 0 of (2.5) is uniforly

asymptotically tstable on S(R). Then for any e > 0, there are h(e) > 0

and K(E) > 0 such that if 11x011 < G((p))/2 and 0 < h < h(e), then the

solution xk of (2.6) starting from x0 satisfies the inequalities (i)

fx~j <P for all k > 0;.and (i1) 11 xkjl < e for all k > K(e) /h.

Proof: We may assume that 0 < e < 8(p). Let r =G(c)/4 and let (e)

•min(hl(r),i/L') where hl(r) is given by lemna 2.15. Also, let K(e)

2(G(8(P)) -G(r/2)) /*l(r).

We consider three cases, namely: (i) 0 < 11r.11 < r, (ii) r < 11x011 < 2 r,

and, (iii) 2r < 11xott < G(B(p))/2.

ease (i): If JjxkII < r for all k >0., then I1xjl < G(e)/4i < e/2 < e for

all k > 0. On the other hand, if 1IxII < r for k - Op,...,n-1 and
I > r, then Ilxnll = Ilxn.+h(Xn 1  ,)fl _< IIx.i.l(l+hL') < 2r and we re-

gard x as an initial point for case (ii).
n



A

Canac (i0 0 Wo 00lni that ¶IxJI f tr al.'l k • 0, (Not, that i %

(p) _< P. ) or•L.y Ijx1I "+ ' t'.,, It r < 11< or < k -C r,n

tthen o(Hjxn,,l3j) < v('n+l) v(KO) + (v(xk1) . v I . V(VO)

|, /' V 0) _ < .41rx11 '. -4r (c) by virtue of .mma 2%U .&li 0,3,

Since 0 in atrictly C)! ono t Imuj t~ and the claimi esablse

by induction.

Thus, oDIrtn,,+ Oo, (i) and (1i), ,, have shown tMat it HiII < Or.

then IIII < r for all k > 0,

ca.e (iii): clearly 11x11 < o(6(p))/: .5 •(p) <p. Sipo,,e that r

.-xll _< e(p) for k n. , Then, G(lj÷xIj) ! vl,.+) v V(N) + EtV().•)-
0

V(xk)) < V(xO) - (n+l)h*(r)/2 < 2-,xOII ! O(5(p)) by virtue of lamas

2.11 and 2.l. . Since G is strictl,, monotone, 1%+1l1 < 6(p) ! p and,

lxkll _< p for a&. k -> 0. Furthm' ore, it (n.+)h > K(i), then

S(11 ., i1) < v(X,,,) - •K(o),(r)/2 < 2I11x:11 - ('t),(r)/R < G(5(p)) - K(,)4(r)

G(r/2). it follows that Uxr, < ri2, The theorem then •ollows frcm the

first two cases,

We note that the theorem does not an&rt that the solution - 0

of (2.6) is Ltable for fixed h. In other words, we do not claim that

for given h and any c > 0 there is Yn I- n(ch) such that if

11.x011 < %, then jjxkjI < c for al& k. Ttearing this in. mind, wo consiaer

the following two.dimensional ystoem:

2 2P
lk x x 4 y)

(2.21)
. - 2

k _
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#0t V(My) O ft%-tl ••, *(B(t),o(1.)) .(n'(t)t/(t))s slon *•.

H l(ti~on at' (fool) a"• mot the tr'ivial h s0totI•tiosl of It'untl) aoymptotlosi1

GOAMIabl It WWIeu' Method il .hPlit to (0,L14)o then the ditttev'nG* Rye.

tot

is obtained, o et 4,NV(iy) 'be given by

so tat (%+pn,y ) *VNx~V.,) % VNx118 Y1 ). veins (2,25~)0 it is easy

to veutf that the trivial solultion at (RoAR) is not stbl and that all Bolus

tum Wih 04Ch(%j4Y 0 ) <I+(I3.hl) (0O<hICl) aneattracted to the
Invoian go 2y; - (11e 1/0 /h, Alhuhthe trivial solution of

(2.22) im nrnt stable tar fixed h, the solutions at (2.22) Goa be =do to

remin arbitrarily close to mero by initialLy choosing h' small enough.

In other words, the theorem asserts that for given 4 )o 0, there ts am h(Q)

much that it h < h(f), then the solutions of (2,22) will lift within the

3. -monential ASyMptotio Stability,

We now consider the case of exponential amymptatio stability.

DPMlMIMON ~ 3.,1 The ooltition x -C of 2,~ is ola anIt4y &amoia

fe.)



1.0

stabl1e ani 8(r) it then re goo I)stive coflPtan's %E 14 such that

11 x4~~Ie(to o 0m4 o l 6 Q)ý" toy 1w 1 ur and t > to. liumilarl.y thie

""_210__ x 0ot (P-6) it M ononti amtotioalstble itthere
_________, ______ tIhat•%}• I•I • '"! • .% mt4 mte'- t,

ane posit•e. .onstsri.n bj hl, Mj, A such ta __k• ! ii5xII for

all h')- whnenve 0 4 I %: an ll~lS /
Skialkns, (t3111) ha. shonm that itthe sera oltoat(.)i

exponlentially asymptotica1lly stable; then so is the ucro solution of (2.6),

We sh&a sho•tly preent an improved version of his result.

.TO4A 3•, uIt the solution x a 0 of (2.5) is e xponentisLy asxptati.

• potll stable on.__then the fAction W(-) defined b(

(3)W(xc 0) au~l~jOl~p&~ a cb)lt 'o 0)

for 0_•• (R) has the followiph prperntiest ( in xo W(x() M4x)i;

V~~lx) - W <o -aouxlnh fo sutbl.e L itive onstants I(,oto'

(where %* M4 are the constants involved in Lhe definition of e!Monantial

Prooft Argue to in [7s PP. 309-~3111.

We now have

TIHEORkMv 3.4. Suppose that the solution x a0 of is.~ ~expnntialy

asymptot3.cally sta.bl.eon S(R). Assizie also that either (a) :v(x4h)

f(x) 2r (b) cp(x,h) Is (Frochet) diI~fferentiable in x and cp(lP is

SI un ifnm~y aont~riu0, h0oi Than tho sol.ution



*0 of (2.6) is eponontIafLy asme~totioall, stable.

IProoti Let b 4 (00 R) and lo.t T i.min(Lollog R/b, ((R/b) -1) /4iax(Lo L'),hb) .
It 0O<hb<9 then x+ hV(xjb) and x+ht(x) are in S(R) for <Icfb

and 11 x(t, x.)I R~ for all. t > 0 if Ixj b (as tx(to x0)I
- 11~1jLt)

Novo lot a(h) 0 or ~cufIIP (x,h) (P ~(xpC)IIxI <b) aocording

an hypothesis (a) or (b) holds. If hypothesis (a) holds$ then tW(x.IP(x~h))-

W(x.Ihf(x))I - 0 < KM~(h)flx4t. On the other hand, if hypothesis (b) holds,

then IW(x+1wp(x~h)) - W(x.hf(x))l 5lMhI(q(x~h) - cp(xso)II ý MbI (x~h) - ~(Osh)-

P(x~O) + q)(0,O)II ý Kh I (11(p(txh) - cpkx~,o0)!hII4I)dt < M~a(h)1141. (NoteJ

0 *
that q)(Olh) * )(osO) w 0.) In other words, we always have

(3.~)IW(xiif(x~h)) -W(x~hf(x))I IKia(h)1141f

for 41i <b.6

Let h' be the least positive root vt K a(h) + Nh) c/2 and letI

hi be any positive number with h I < min(i',1i-,2Mv/c). If h < hi and

11 x011 < b, then W(xo~h;W(x 0 ,h)) - W(x0) < IW(x 0+hp %, h)) - W%+hf (xo)) +

*IIW(x 0+hf(xQ)) - W(x(h;y 0 ))l + W(x(h X,)) W(x0 ) < flx011(Ka (h) +KNh..c) <
Iý -Ix,0II c /2.

Now let M M and =c/(214. We L~hall show by indiuction that

if IjxIjj <b/M, then

(36 1x jjx1 -k



for a•l k. ClearJ.y (3.6) holds for kt , 0 and so, we suppose it holds

for 0 < )t < n. For any sob 1, 1 x.11 ý 11I"-olle a4 < 14X0o <b and so,

'W~k,-l W(xk) < ý X1 Since W(xk) ý Alxk11ID W (xk.,1) <W( (1-h).

If W(x) .0 for an k < no then W(xk4 ,) w 0 for &11 A > 0 anfd

(3,6) is natisfied. Otherwise, 11xn+11 <W(xn~l) <5W(xn)(l43h) <

W(xo)(l-Ph)n+l < •ixoii.'hn+l) Thue, the theorem is established,
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